Data Refinement 阅读笔记(3) Xiaoqiang Wu

Relations and Recursion

Partial Orders and Monotonicity

There is three definition in order to undertaken in later chapters required.

avatar

avatar

avatar

Note that least fixed point is a key concept for characterizing recursion.

Binary Relations

In this section, the important formula is:

\[r;t\subseteq s\]

We use three operators to express the solution of the formula.

  • $r\rightsquigarrow s$ denotes the maxmial solution of the formula in $t$.
  • $[t]s$ denotes the maxmial solution of the formula in $r$ the weakest prespecification of t w.r.t. s.
  • $\langle t\rangle s$ denotes the dual of the weakest prespecification operator.

Some properties of the three operators are given in this monograph.

Recursion and Termination — the $\mu$-Calculus

This section show the least fixed point is solution of terminated recursion loop. As a example, we looking for a fixed point of the function

\[f(X) = b;S;X\cup b'\]

The unique solution is $\mathbb{N}\times {0}$.

Relational Semantics of Recursion — the Continuous $\mu$-Calculus

这个有点奇怪,在”面向计算机科学的梳理逻辑”一书中我们发现我们的系统应该属于无限状态空间的情形,并不使用模型检测的方法进行建模。但是这里使用的mu-calculus却是一种模型检测的方法。该方法在System Validation中进行了详细的讲解。这个部分先放弃了,看的云里雾里的,后面需要再回头来研究。